Engaging stakeholders in the development of simulation models to inform resource management

This journal article by Brian Miller and others, published in the journal Ecosphere, demonstrates how a scenario planning process can be combined with a state-and-transition simulation model of vegetation dynamics to inform land management decisions for rangelands in the face of climate change. The study highlights the benefits and challenges of engaging stakeholders in the development of simulation models to support decision making.  The authors also identify some key tradeoffs between grazer density and vegetation composition, as well as between the short‐ and long‐term costs of invasive species management.

ST-Sim course + workshop on modeling land use change and carbon: June 12-14

Course & Workshop

Sponsored by

California Air Resources Board

U.S. Geological Survey

Apex Resource Management Solutions

This unique event begins with a two-day online course on the fundamentals of developing state-and-transition simulation models of landscape change, followed by an optional one-day workshop on how this approach has been used to integrate projections of land-use/land-cover change and terrestrial carbon dynamics across the state of California.

State-and-transition simulation modeling online course: June 12-13, 2018

This two-day course establishes the fundamentals attendees need to use the free ST-Sim software to develop spatially-explicit, integrated models of both landscape change and carbon dynamics. The course will be delivered interactively online with an option to follow the course in a group setting at the California Air Resources headquarters in Sacramento, California.

California land use and terrestrial carbon modeling workshop: June 14, 2018

This workshop focuses on how the U.S. Geological Survey has used the ST-Sim software to develop and apply the Land Use and Carbon Scenario Simulator (LUCAS) in California. The California Air Resources Board will host this workshop at their headquarters in Sacramento, California, with live-streaming available for those who are unable to attend in-person.

For additional details please visit: www.apexrms.com/training

Approach for simulating continuous state variables in ST-Sim published in Methods in Ecology and Evolution

In December 2017, Colin Daniel and others published a study in the journal Methods in Ecology and Evolution describing a new approach for integrating continuous stocks and flows into a state-and-transition simulation model (STSM). This is the method behind the Stock-Flow Add-On to the ST-Sim software, which allows users to extend their models developed in ST-Sim to include interactions between continuous state variables and STSMs. For example, a model in ST-Sim can now track forest carbon in any number of continuous carbon pools (i.e., live biomass, deadwood and soil), with fluxes between these carbon pools triggered by wildfire transitions in the STSM.  The paper illustrates the approach by extending the original Hawaii STSM case study in Daniel et al. 2016 to integrated a spatially-explicit carbon budget model with a STSM of land use/land cover change.

New paper using ST-Sim to project future scenarios of land change for the state of California

Benjamin Sleeter and others at the U.S. Geological Survey and the State of California have recently completed a study published in Earths Future. This research demonstrates a new approach for projecting changes in Land Use and Land Cover Change (LULC) based on land use histories and demographic trends. This study suggests that estimates based on demographic trends alone will likely under represent the impacts of future LULC transitions when compared to a scenario representing business as usual projections. Simulations conducted as part of this study project that the greatest impacts of LULC change in California will occur in rangeland ecosystems.

Major new versions of SyncroSim and ST-Sim, including R package and Lite version, available for free download

SyncroSim Version 2, including the new rsyncrosim package for R, is now available for free download. This new version of SyncroSim represents a major milestone in the development of our scenario-based, stochastic modeling toolkit. With the release of Version 2, it is now possible to develop of any number of plug-in “modules” for SyncroSim – such as our flagship ST-Sim module for developing state-and-transition simulation models of landscape change – each representing one or more interconnected processes in a modeling project. Key new features of the SyncroSim software framework include: (1) the ability to connect multiple simulation models; (2) to script a modeling workflow from start to finish in programming languages such as R and Python; (3) to publish models for use by a non-technical audience using the new SyncroSim Lite user interface.

Bronwyn Rayfield coauthors publication in Science on network modularity

ApexRMS associate, Dr. Bronwyn Rayfield, recently coauthored a paper in Science on the effect of modularity on the ability of a network to withstand perturbations.  This study is the first that experimentally demonstrates this theoretically predicted property of modular networks. The results have implications for network design across disciplines from ecology and conservation to financial systems.

New publication: Incorporating uncertainty into forest management planning

A newly published article in Forest Ecology and Management by Colin Daniel and others demonstrates the use of ST-Sim as a tool to incorporate uncertainty into forest management planning.  The approach is applied to two boreal forest landscapes in Ontario and quantifies the risk of shortfalls in future timber harvest due to uncertainties in wildfire. The article is available as a free download for a limited time. The ST-Sim model library used for this study is also available.

Projecting the future range of variability in rangelands

ApexRMS recently presented a webinar in collaboration with Dr. Matt Reeves and Dr. Paulette Ford at the U.S. Forest Service Rocky Mountain Research Station.  The webinar demonstrates how a state-and-transition simulation modeling approach can be used to account for future uncertainties regarding climate change when evaluating alternative rangeland management strategies. This project focuses on the impacts of drought and grazing on rangeland productivity and composition. A recording of the webinar is available online.

ST-Sim used to project changes in tsunami hazard exposure in the US Pacific Northwest

A recent USGS led publication in the International Journal of Disaster Risk Reduction used ST-Sim to project land use change and associated population growth in tsunami hazard zones along the US Pacific Northwest coast. The study demonstrates how land change simulation modeling can be used by local governments to incorporate the hazard exposure implications of community growth in land use policy and risk reduction planning.

Recent publication of ST-Sim case study in Carbon Balance and Management

A recent publication in the journal Carbon Balance and Management, entitled A carbon balance model for the great dismal swamp ecosystem, uses ST-Sim to assess the historical changes in the net ecosystem carbon balance for a critical 54,000 ha wetland in North Carolina and Virginia. The study, conducted by Rachel Sleeter and others at the U.S. Geological Survey, concludes that changes in the wetland’s carbon balance over the past 30 years, as a result of emissions due to recent fire and storm events, are essentially irreversible over a management timeframe.  Future applications of this model will explore alternative land management scenarios for sequestering additional ecosystem carbon, such as the rewetting of large portions of the wetland.